X^2+y^2-6=56-8y

Simple and best practice solution for X^2+y^2-6=56-8y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+y^2-6=56-8y equation:



X^2+X^2-6=56-8X
We move all terms to the left:
X^2+X^2-6-(56-8X)=0
We add all the numbers together, and all the variables
X^2+X^2-(-8X+56)-6=0
We add all the numbers together, and all the variables
2X^2-(-8X+56)-6=0
We get rid of parentheses
2X^2+8X-56-6=0
We add all the numbers together, and all the variables
2X^2+8X-62=0
a = 2; b = 8; c = -62;
Δ = b2-4ac
Δ = 82-4·2·(-62)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{35}}{2*2}=\frac{-8-4\sqrt{35}}{4} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{35}}{2*2}=\frac{-8+4\sqrt{35}}{4} $

See similar equations:

| 3-x/4=1/2 | | z/5-4=11/2 | | x/5+0=-4 | | 4u=16/7 | | 3.5d+5.75=2=4.25d | | x-3/17=3/17 | | x+48+x=3x+5x | | -11=-7+2v | | 5(b-1)=100 | | 7x+3-5(x-2)=4x-8 | | -(4+3a)=9(3-a) | | H=-16t2+8t+15 | | 33-j=24 | | 8x=-32x | | 7x–5x–3=x+4 | | (3x-)(x+5)=0 | | 3x+2(5x−3)=7 | | z/5-4=32/3 | | (12x)^2-5=70 | | 15=t+107/18 | | 46000=x*2x | | 5x-76+3x+16=180 | | d=-540.7+2d | | 6x-3+4+1=3x+5 | | 2(x=-3) | | 4/x-3=7/14-x | | 2=(y+2) | | 2=(w-6) | | m/4+83=88 | | −a−Δ√2a=−(5)−72∗−3=−12−6=+2 | | 2x-5(x-5)=-8+2x-2 | | 4−3/4x=25 |

Equations solver categories